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ABSTRACT

This paper presents finite dimensional approximations for linear retarded
functional differential equations by use of discontinuous piecewise 1linear
functions. The approximation scheme is applied to optimal control problems,
when a quadratic cost integral has to be minimized subject to the controlled
retarded system. It is shown that the approximate optimal feedback operators
converge to the true ones both in case the cost integral ranges over a finite
time 1interval as well as in the case it ranges over an infinite time inter-
val, The arguments in the latter case rely on the fact that the piecewise
linear approximations to stable systems are stable in a uniform sense. This
feature is established using a vector-component stability criteribn in the
state space R x L2 and the favorable eigenvalue behavior of the pilecewise

linear approximations.
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1. INTRODUCTION
0 .
Given $ ¢ B and ¢1:[-h,O]+ R' consider the retarded functional
differential equation with constant coefficients

0

x(t) = Ax(t=h ) + [ A (s)x(t+s)ds, € >0
-h

k

I ™~10

0

0

x(0) = ¢°, x = ¢! in 13(-h,0; ).

0 1

An equivalent abstract Cauchy problem z(t) = Az(t), t 2 0; z(0) = (¢, ¢7)
in the space M2 = B x Lz(-h,O; r) generates a strongly continuous
semigroup. Approximations are constructed by restricting the problem to

finite dimensional subspaces AR B x YN - Mz, defining appropriate
generators AN on ZN.

Banks and Burns [1] used subspaces N which consist of functions that
are piecewise constant on the delay interval [-h,0]. This is the well-known
averaging approximation scheme. As an extension, Burns and Cliff [5] enlarged
the subspaces to piecewise linear functions. 1In both papers, the approximat-
ing generators were constructed by forward difference methods. 1In [3] the
approximations were obtained by projections onto subspaces of continuous
splines being contained in the domain of A, Then Kappel and Salamon [14]
introduced §~type operators in order to define generators for a spline scheme
whose adjoint semigroups converge strongly. These d§-type operators are
specially constructed to approximate the differential operator A at the

discrete delays, where the splines may be discontinuous, as are the functions

in the domain of A*.



In this paper, a new scheme is presented employing again subspaces of
orthogonal piecewise linear functions as in [5], but using S-type operators
for the construction of the approximating generators, These operators are
needed at each meshpoint, where the subspace functions may be discontinuous.
In fact, the number of discontinuities increases with the order of the approx-
imation, in contrast to the spline case, The resulting generators are
completely different from those given in [5].

An application of the approximation schemes is the optimal control prob-
lem, when an integral ranging over [0,T), quadratic in the trajectory and in
the control, is to be minimized subject to the controlled delay equation. It
was shown by J. S. Gibson [9] that, if T < o, the strong convergence of
the semigroups and their adjoints yields convergence in norm of the optimal
feedback operators. In this present work, strong convergence of the
semigroups and theilr adjoints is proved using the Trotter-Kato Theorem as in
{11, [9]. Thereby, it is not necessary to assume absolute continuity of Ay1s
as did the proofs in [12], [13], [1l4].

In the case of the so-called infinite time horizon T = o, Gibson”s
approach rtelies on the assumption that a stable system 1is approximated by
systems that are stable in a uniform sense. For the averaging scheme, this
stability preservation property was established in [19], and in [12] for the
Legendre—tau methods. 1TIn contrast, the spline schemes do not have this qual-
ity (see [l4]). This is due to extraneous eigenvalues close to the imaginary
axis., It is shown below that the eigenvalues of the present scheme converge
to those of the delay equation and that exponential stabilty of our approxima-
tions is dominated by their R'-components. Thus, uniform preservation of
exponential stability 1is proved with decay rates arbitrarily close to the

decay rate of the hereditary system.




|

The matrices corresponding to the piecewise linear functions are banded
and sparse, 1in contrast to the Legendre and spline methods. While the
Legendre schemes [11], [13] exhibit high accuracy even for low order of
approximation, the numerical efficiency of the present scheme 1s about the
same as that of the first order splines in [14], and superior to the averaging
methods [1] as well as those in [5].

Preliminarily, Section 2 collects some facts on the semigroup generated
by the uncontrolled system and on the linear quadratic hereditary control
problem (see [6], [8], [9]). Section 3 presents an approximation framework
suited to Chapter 4, where the pilecewise linear scheme is developed, In Sec-
tion 4,1, the S~-type operators are defined and the projections onto the sub-
spaces of plecewise linear functions are investigated. 1In Section 4.2, the
approximating generators and their adjoints are constructed and convergence
results for the finite time horizon problem are proved. 1In 4,3, the matrix
representations are given and an K'-component stability criterion is
established. Section 4.4 investigates the eigenvalue behavior of the approxi-
mate systems when the order of approximation increases, In Section 4.5, the
uniform stability preservation is proved. Finally, in 4.6 there is a brief
discussion of the numerical tools needed for the implementation of the scheme

on a computer and the results of three examples are tabulated.

2., THE LINEAR QUADRATIC OPTIMAL CONTROL PROBLEM FOR HEREDITARY SYSTEMS
We are concerned with the 1linear retarded functional differential

equation



(2.131) x(t) = Lx_ + Bou(t), t>0

in R, where for some fixed finite delay h > 0, X, : [-h,0]> B' 1is defined
by x.(s) = x(t+s), By 1s a real nxm-matrix and u(t) ¢ R, The bounded

linear functional L: C(-h,0; B) » ®' is given by

1 P { 0 1
Lo = ] Ae (-h) + [ Ay ()9 (s)ds,
k=0 -h

with 0 = hy < eee < hp =h, A ¢ BN Kk = 0,e0e,p and Ay € Lz(-h,O;

Xy,
_ 0.1 2__]@ 2¢_ . 2 .
Given d = (¢ ,0°) e M = x L%(-h,0; ') and ue€ Lloc(O,w, ),
there exists a unique solution x(t3;¢p,u), which is absolutely continuous

with L2-derivative oa every interval [0,T], and satisfies (2.131) for almost

all t > 0, and the initial condition

(2.1;2) x(036,u) = 67, x(+3¢,u) = ¢! 1in L%(-h,0; EV).

Defining the state at time t by

(2.2) z(t;o,u) = (x(t;¢,u), xt(¢,u)) € MZ,

system (2.1) 1is converted to an abstract Cauchy problem in MZ, which is a

Hilbert space with the inner product <(¢0, ¢l), (wo,wl)> = ¢OT¢O + <¢1,w1>2.

Let S(t), t >0 be the Cy-semigroup corresponding to the free motion of

(2.1), i.eo,

S8 = (x(£30,0), x,(6,0)), £20, ¢ ¥
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and define the input operator B:T' » M2 by
Bu = (Byu,0), ue E.

Then the evolution of z(t;d,u) in time is governed by the variation of

constants formula
t
(2.3) z(tsp,u) = S(t)$ + f S(t-s)Bu(s)ds, t > 0.
0
The infinitesimal generator A of S(¢) is given by
dom A = {¢ € Mol ¢ wH2(-n,0;8), ¢l(0) = 47},
1 .1
Ap = (L ,¢07),
where Wj’p(a,b;ﬂ?) denotes the space of W'-valued absolutely continuous
functions on {a,b] possessing j-1 continuous derivatives and j-th deriva-

tives that are in LP(a,b; TB'). The function z(t; ¢,u) in (2.3) is a

mild solution of the abstract system
() z(t) = Az(t) + Bu(t), t >0, z(0) = ¢.
Weighting the past history by the step function

g(s) =p-k+ 1, S € ["'h.k,"hk_l), k= l,oto,p’



we have an equivalent norm corresponding to the inner product

0
>, =00+ [ i@ oneras, 6, v e
‘ -h
If

1 2
(2.4) o>+ A += E [A 17 + na,
=2 0 2 =1 % 01 Lz(—h,O; B M)

the operator A-wI is dissipative in M;’ that is
2
<A¢’¢>g.§ wu¢ﬂg, ¢ € dom A.

Therefore, by the Lumer-Phillips Theorem, there exists a constant M > 1 such

that

(2.5) 1S(en , < M, £ >0,
M

The Mz—adjoint of A generates the Mz-adjoint semigroup S(t)*, t >0 and is

given by
% 2,1 . Pl 1o 1,2 1 T.0
dom A = {¢p e M| + ) ¢ Xp_p _ e W’°(-h,0; ), ¢*(-h) = A'¢"},
R AR GRS p
(W9)° =410y + a%”,

*x 1 1.0 a ,1 Pl oo
(WoY =hyo” —gg (o0 + I A X))




Xy denotes the characteristic function of the interval 1I. The optimal con-

trol problem on a finite interval is: given 0T K = and $ € M2 find
the control u e LZ(O,T; ") that minimizes the cost functional

T
J(u,,T) = X(T;¢,u)TGOX(T;¢,u) + (x(t;¢,u)TW0x(t;¢.u) + u(t)TRu(t))dt,
0

where GO = Gg and WO = Wg are nonnegative matrices and R = RT is
positive definite, Defining the operators G: MZ + M2 by G = (G0¢0,0)
2 2 _ 0
and W: M" + M® by W = (WO¢ ,0) we have
J(u,9,T) = <z(T;¢,u), Gz(T;¢,u)> +
(2.6)
T T
+ f ((z(t;¢,u), Wz(t;¢,u)> + ult) Ru(t))dt.
0

The solution to the linear quadratic control problem (2.3), (2.6) in the

Hilbert space M2 1s based on the Riccati differential equation
%? <Y,Ia(t)e> + <AY,N(t)¢> + <M(t)y,Ad> -

(2.7) - <;(t)y, BRIBM(t)> + <y, We> =0, for ¢, ¥ edomA, 0<t<T,
n(T) = G.

There exists a unique, strongly continuous family of nonnegative selfadjoint

operators n(e), t > 0, satisfying (2.7). The optimal control u is

given in feedback form



1

(2.8) Tty = R ez, 0 <e<T,

where z(t) is the mild solution of

1

z(t) = (A - BR B*H(t)), z(0) = ¢,

f.e.,
- t -1 % -
z(t) = S(t)¢ - [ S(t-s)BR "B N(s)z(s)ds.
0
The optimal cost is J(u,$,T) = <$,0(0)¢>. With respect to the product

structure of M2, we can write

00(t) HOl(t)

n(e) = , 0<t<T.

nlo(t) (v)

T
Hoo(t): B s+ B and Hll(t): L2(—h,0;E?) +> Lz(—h,O;EP) are selfadjoint
and nonnegative. Since Hlo(t): P » 12(-h,0; ®), it has a representation
by a matrix valued fumction T ,(t,+) € L2(—h,0; M, 1i.e.,

(Hlo(t)E)(s) = Hlo(t,s)E, 0<t<T, &e B. Using this notation, we write
for ¢l € L2(-h,0; ’r)

0
* 1 1 T 1
Mo =1y (£)¢ = _{ I, (t,8)¢ (s)ds.

*
Since B¢ = Bg¢0, $ € Mz, the feedback law can be written in terms of the

delay system:




a(e) = = 1T, (e)x(t i X
u(t) = oMo t)x(t) + _£ 15(t,8)x(t+s)ds],

x(t) being the solution of the closed loop system

- P
x(t) = (AO - ByR 1Bgﬂoo(t))x(t) + kzl A x(t-h ) +

lBgﬂfo(t,s))x(t+s)ds, 0<t<T.

+ -£0 (AOl(s) - BOR_
We also consider the infinite time horizon problem, that is the minimization
of J(u,4) given by (2.6) with G=0 and T = o, and assume that the
system (2.,1;1) is stabilizable, i.e., A - BK generates an exponentially
stable semigroup for some linear bounded operator K: M2 > W', Then there
exists a nonnegative, selfadjoint operator I € L(MZ) that maps dom A
into dom A* and satisfies the algebraic Riccati equation

*
1B e + Wp = 0, ¢ € dom A,

(2.9) A*H¢ - IAp - IBR
1f, in addition, system (2,1;1) and Wo have the property, that any
admissible control drives the state to zero, that is J(u,$) < = implies

z(t;p,u) > 0, as t + o, then n is uniquely determined., This certainly
is true if (2.1;1) with output Wo 1is observable or if W, is simply non-
singular. Using the time independent solution of (2.9) in the feedback law
(2.8) gives the optimal control and trajectory as in the finite time horizon

case.
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3. FINITE DIMENSIONAL APPROXIMATIONS
Our goal is to construct systems of ordinary differenti{al equations, such

that their solutions approximate the solution to the hereditary control prob-

lem in Section 2, To this end, let YN, N =1,2,00s be a sequence of fi-

nite dimensional' subspaces of Lz(-h,O; ®') with corresponding orthogonal

projections pT. Then ZN = ¥ x YN, N = 1,2,00¢ are finite dimensional

subspaces of M2 with corresponding orthogonal projections pN¢ = (¢0,pN¢1),
1

$ € Mz. Suppose there is a sequence of linear operators AN: ZN + ZN and

let SN(t), t>0 be the uniformly continuous semigroups on M2 generated

by the bounded linear operators ANpN: M2 > ZN, i.e.,

N
ANp t

SN(t)¢ = e é, ¢ ¢ MZ.

Remark. We exteand AN to all of MZ, because we want the semigroup SN(-)
acting on the whole space., Instead of letting the generator ANpN =0 on

(ZN)l, we equally well could choose another appropriate extension, All that

is said about the control problems in zN

SN(-) in M2 in this section, remains valid, if we take the generator of

and the corresponding semigroups

SN(O) to be ANpN - af(l - pN) with some a ¢ R For simplicity of
exposition, we shall make use of this possibility only at the end of the proof
6f Theorem 3.5 below.

We will use the following hypotheses in order to get the desired conver-
gence of SN(t) to S(t), the solution of semigroup generated by A as

defined in Section 2,
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(H1) There exists a coanstant ® £ R such that

<AN¢,¢>g S_m“¢“§ for all ¢ € Z', N = 1,2,00¢ .

(H2) There exists a subset D C dom A and a real number A > w, such that

(1) (AL - A)D 1is dense in M2,

(i1) for all ¢ € D, ANpN¢ + Ap as N+ =,

By the Lumer-Phillips theorem, (H1) implies

(3.1) 1SN Ce)en , < Me®t 14y ’»
- M

M

r
v
(=]

for all ¢ ¢ MZ and some M > 1, Since (AI - A)—I: Mz + dom A 1is con-

tinuous 1if A > w, (H2) (1) implies that also D 1is dense in M2, so that

we have the following version of the Trotter-Kato theorem [17, III, Th. 4.5].

Theorem 3.,1: If the sequences ZN, AN, N =1,2,0¢¢ satisfy (H1) and

(H2), then for all b € MZ, SN(t)¢ + S(t)$,N + o, uniformly in t on

bounded intervals.

Observing BE = (BOE,O) £ ZN, £Ee for all N, we take the input
operators BV: W s 2N as BNE = Bg to define finite dimensional

control systems on zN;

0% s = a2 + M), £ >0, 20 = pY,
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where u(+) € Lioc(o,w; ®") and d € M2, The solution to (ZN) is
given by
t
2N (tspNg,u) = SN(e)pNe + [ SN(t-s)B u(s)ds.
0

As a consequence of Theorem 3.1, one derives (see for instance [14], Th. 4.2)
convergence of zN(t;pN¢,u) to z(t;¢,u), the solution of (J]) given in

(2.3):

Corollary 3.2. Assume (H1), (H2) and

(H3) pN¢ > ¢ for all ¢ e M2.
Then for all ¢ € M2

. N N

(3.2) z (t;p ¢,u) » z(t3¢,u), as N » =,

The 1limit is uniform in t on bounded intervals and u in bounded subsets

2
25 Lloc

(0,=; BY.

Writing zN(t;pN¢,u) = (XN(t),yN(t)) € ZN, with some xN(t) e R,
AyN(t) € W (3.2) implies xN(t) + x(t3d,u) uniformly in t on bounded
intervals, where x(t3¢,u) is the solution of the hereditary system (2.1).

Seeking approximations for the optimal control problem (2.3), (2.6), we

define the costs JN(u,¢,T) by
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Nu,e,m) = <2N(T3p%, 00,627 (T30, u)>

(3.3)
T

+ ((zN(t;pN¢,u),WzN(t;pN¢,u)> + u(t)TRu(t))dt.
0

From the control theory of finite dimensional systems, it is well known that

the optimal control minimizing (3.3) is given by
- *
(3.4) T(e) = RIEN N0, o<t T

where EN(t) is the solution of

N

2Ny = (A - BNR—I(BN)*HN(t))zN(t), z2N(0) = pNg,

N

and HN(t): ZN + Z is the unique nonnegative selfadjoint solution of the

Riccati differential equation on zN

%E Ny + Y Ny + VAl
(3.5) -t RTIEN N W =0, o< <,

™y =6V,

Here GN¢ = G and WN¢ =Wp for ¢ ¢ ZN. The optimal costs are given
N N N N N

by J(u,$,T) = <p ¢, (0)p ¢>.
In applications, the original system () is controlled by use of the

approximate feedback law (3.4) instead of (2.8), i.e., Tu(t) is replaced by
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the so-called suboptimal control
(3.6) ey = R7PEH NN, 0 <<,
where ;N(t) is the mild solution of

2e) = (A - BR(BH T (e)pN2(e), 2(0) = 4.

In order to establish convergence of the optimal and suboptimal controls, we
*
have to deal with the Mz-adjoint semigroups SN(-) generated by the M2-

adjoints (aANpM)* of ANpN, The adjoint of AN: zV s> zZV  is

(AN)*: 7N » ZN. Therefore, (ANpN)* = (pNANpN)* = pN(AN)*pN = (AN)*pN.
Since (H1) implies (3.1), the estimate (3.1) 1is valid also for (AN)* if
AN, N =1,2,000 satisfy (H1). Thus, using Theorem 3.1 and Corollary 3.2,
beside (Hl1), (H3) we need (H2) with A, AN replaced by A*, (AN)* respec—
tively (this will be denoted by (HZ*)), to obtain SN(t)*¢ > S*(t)¢, ¢ € Mz,

uniformly in t on bounded intervals,

The following assertions were proved in [9] (also [14], Th. 4,3).

Theorem 3.3: Let (H1) - (H3) and (H2¥) hold. Then, as N + «

(a) HHN(t)pN - n(t)n 5 0.

L(M™)

(b) For_the controls and trajectories given in (3.4), (3.6), and (2.8)

M) > ), T > w(e),  2Ne) > Z(e),  Te) » 2(t)
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the limits being uniform in t, 0 < t < T,

(e) JN(GN,¢,T) + J(u,s,T), JN(KN,qs,T) + J(u,$,T).

In the case of the infinite time horizon, we deal with the algebraic
Riccati equations

* - *
(3.7) (AN) N+ nNaN - NaNR 1(BN) mN+w =0

on ZN, N=1,2,eee If (AN,BN) is stabilizable, then there exists a

nonnegative, selfadjoint solution HN

of (3.7), governing the optimal feed-
back.

We will establish convergence of the Riccati operators HN again using
Gibson”s arguments [9]. However, this approach is based on the assumption
that the stabilizability of the hereditary system implies that the systems
(AN,BN) are stabilizable in a uniform sense with respect to N (see hypoth-
esis (H5) below). As to the investigation of stabilizability or exponential

stability of Co—semigroups there is a Lz—stability criterion due to R, Datko

[7]. We state here a special version (a proof may also be found in [19]).

Lemma 3.4: Let s(t), t >0 be a Cy-semigroup of bounded linear

operators in a Banach space X satisfying

a,t
1
(3.8) ﬂS(t)"L(X) S_Mle , t>0 and
(3.9) f°° is(e)xiZde < cixi?, x e X
X ="1"%x

0
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for some constants M, ;s € > 0, Then there exists an exponent

a = a(cl,Ml,al) >0 and a constant M = M(cl’Ml’al) > 0 such that

-at

(3.10) 1s(e)n Me ~, t>0,

L <
N

Note that if we can prove (3.9) for the semigroups ST () with ¢y

independent on N, then, by (H1), (3.10) yields the exponential stability of

SN(o) uniformly with respect to N, Moreover, observe that the estimate

(3.9) is eqivalent to

o

(3.11) [ 10 _at < epm’,, x e W,
0 R M
for some constant ¢, > 0, if S(e) is the solution semigroup on M2 as

defined in Section 2, By Fubini”s theorem, this equivalence follows directly
from the state concept (2.2) and is a special feature of the semigroup
associated with the retarded functional differential equation (2.};1).

As far as we want the semigroups SN(-) to be suitable approximations
for S(-), it seems to be natural to demand the equivalence of (3,9) and
(3.11) also with regard to SN(o). We call this the VDP-property of the
approximations (meaning the vector-component dominance is preserved). It
plays an important role for our approach to stability questions in context
with the infinite time horizon control problem.

Suppose for N sufficiently large there exists a solution HN to the

Nth algebraic Riccati equation (3.7). Then with

- *
KN AN - BNR 1(BN) HN
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ZﬂpN generates an exponentially stable semigroup §N(-) on M2. We

introduce the projection V: M2, @
0.1 0
V(¢ ,0) = ¢
and want the following hypothesis to be valid:

(H4) Provided N is sufficiently large, there exists a ¢ > 0, independ-
N

ent on N, such that for all ¢ ¢ Z

/ "§N(t)¢H22 dt < ¢ n¢u22
0 M M

if and only if there exists a ¢y > 0, independent on N, such that
N

for all b e Z

® =N 2 2
[ VS!S dt < ey o7,
0 i -2

If Il is a nonnegative selfadjoint solution to the algebraic Riccati

equation (2.9) for the hereditary control problem, define the operators

B 2N s N N =1,2,000 by

and let §N(-) be the uniformly continuous semigroup on M2

ZNpN, i.e., EN(t) =e

generated by
, t 20,
Intending to provide the existence and uniform boundedness of the oper-

N
ators I, we demand:
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(H5) 1If the hereditary system (I) 1is stabilizable, then there exist con-

stants M, B > 0 such that for N sufficiently large

Theorem 3.5: Let (H1) - (H5), (H2*) hold and assume Wy is

nonsingular, T1f the hereditary system is stabilizable, then

N

(a) for N sufficiently large there exists a solution 1 to the Nth

algebraic Riccati equation (3.7) and

IIIINpN - 1 9 + 0, N + =,
L(M™)

(b) The optimal and suboptimal controls and trajectories and the correspond-

ing costs converge as in Theorem 3.3 (b), (c).

Proof: As 1in [9, Th. 7.4], we first consider the Nth problem (XN)
with initial value ¢ € Mz, when it is controlled by the feedback
ﬁN(t) = -R_lB*HpNz(t). The evolution of the state in time 1is then described

by M) = Ne)pVe and the corresponding costs can be estimated using
(H5):

NGV = [ (&N, ) + N TRaN(e))ae
0

512% (gl + ]R-ll 13012 2y nen.
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Thus, there exists a nounegative selfadjoint solution HN of the Nth alge-

braic Riccati equation for N sufficiently large and
oo, mpNe> < NG, 0) < o) 100

with some constant ¢y, which does not depend on N. Therefore, there is an

index NO such that

(3.12) M < ¢, NN

The convergence statement in (a) now follows from [9, Th. 6.9], once that we

have shown
(3.13) II'SN(t)II _S'Me_at, t>0, N>N

for some constants M, a > 0.

-1

Since WO > 0 we have |€|2 S_u ETWOE, £ e T, where u is the minimum

eigenvalue of Wy. Following the arguments given in [9] (proof of Th. 7.5)

N

let ¢ € Z and define EN(t) = §N(t)¢ = (xN(t),yN(t)) with xN(t) €

B, V() € ¥V, £ > 0. Further note that R BT (),B Iz (e)> >0,

yN(t) so that ®

/ |xN(t)|2dt <yt [ )T waN(t) dt
0 - 0

-]

< G, @ RIBTHZ (0> jat
0 M
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v, f A W@+

0

N 1

- * -] -
BRIB TNE ()pdr> = u <o, V0>,

applying [9], Cor. 4.2 to the semigroups SN(-). It follows f |V§N(t)¢l2
0

1c1ﬂ¢“2, N> NO and, by Thypothesis (H&4), f n§N(t)¢n2 dt S_c2n¢ﬂ2
0

with some ¢, > 0. Also, because §N is generated by (AN - BR™

4t S_u_

1. % N, N

BI)p,

(3.1) and (3.12) imply (e.g. [17], III., Th., 1l.1) the existence of constants
—N alt

M;, ¢ such that 1S (t) S_Mle , t >0, N Z.No' Now Lemma 3.4 assures

that there are constants M, a > 0 such that

1S (e) &< Me™®t £ >0, N>N
NS 2

But this proves (3.13), since, as we mentioned in the remark above, we may re-

N L" < e-at, while the
@z -

finite dimensional control problems on zN remain completely unchanged.

place A.NpN by ANpN - a(I-pN), so that "§N(t)

Statement (b) follows from (a) in a manner similar to that in the finite time

horizon case (see [9] or [14]).

4. THE PIECEWISE LINEAR APPROXIMATION SCHEME

While the foregoing statements are of rather general nature, this section
ﬁresents a special approximation scheme using so-called piecewise linear func-
tions., We prove via several lemmas that this scheme satisfies the hypothéses
(1) - (H3) and (H2*). Then we show that it has the VDP-property, so that
(H4) is valid. Furthermore, we investigate the characteristic matrix of the

approximate systems in order to establish results on the eigenvalue behavior
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when the approximation index iuncreases, This enables us to conclude (HS),

Finally, we present some of our numerical findings.

4,1 Projection onto spaces of piecewise linear functions

Corresébnding to the discrete delays by in (2.131), for N = 1,2,e0¢

we subdivide the intervals Iy = [-hy,-hy_;), k = 2,¢ee,p and I; = [-h;,0]

N NN
into the subintervals ij [th K,j-1

the exception I11 = [tTI’O]) by defining the meshpoints

)’ = l,aoo’p’ 1 = l’oo.’N (wj_th

tkj = —hk_1 - Jrk/N, j = 0,ees N,
where o = hy - hk—l’ k = 1,ee¢e,p, For each N & W the set N of all
functions [-h,0] + ®' that are polynomials of degree one on every ianterval
IE1 is commonly called a space of piecewise linear functions on [~h,0]. A

basis of YN s given, written in a simplifdied notation, by the 2pN matrix

functions

N
®,25-1(8) = XIN (s) + 1,
(4.1) k3 K= 1,000,p, j = 1,000,N

(s) = C-— (s+h )+2] Dx N (s) » 1,

k 23
Tk kj

where T denotes the nxn identity matrix. The following diagram illus-

trates the definition of the basis elements.
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N N
%, 25-1 .1
1
]
é N N N
%3 %, 5-1 £ 0
N N
%, 25 €,2
-1

~ ~

The pairs ey = (1,0) and egj = (O,egj) are a orthogonal basis of the

n(2pN+1) dimensional product space N = m YN, N=1,2,00e , The

N 2

orthogonal projections P : M » ZN

are of the form DN(¢0,¢1) =

(¢0,p7 ¢1), where p? is the L2-orthogona1 projections from 1.2 onto

YN, with
N_ ,°N “N _
Q = (<ekj,eml>) =
(4.2)
r r T r [ of r r r
1 1 1 1 2 b
_diag(l’r’w’ ...’N_’ W’ .N__., W’ ...’NR’ -3-%)@1
we have
(4.3) > = MO TNy, 4, v e 2,
N, N N.-1 0 N 1 N 1 2
(4.4) a7 (p79) = (@) eol(d”,<eys¢ >prtreade] gyt >y)s b € M

where the components of the coefficient vector aN(pN¢) are given by
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ay = ¢0 and
N N N 1
ak,zj_l(p $) = -r_{N ¢ (s)ds,
(4.5) k k = l’coo,p, j= l’oon’N.
N., 3N
ZJ.(P $) = ;r-{N (s)¢ (s)ds.
| k]
i\
* We frequently will use the abbreviations ¢§j = azj(pN¢) and ¢N = pT¢1.
J Note that
\
' N N (1/2 1
oy 2511 < G e,
(4'6) k = 1)"'113) i-= 19""N
3N,1/2 1
oy 25 S & ) 9y .

Obviously, the spaces zN  are not contained in the domain of the gene-
rator A of the hereditary semigroup, since the elements of YN ,re not dif-
ferentiable on [-h,0]. Nevertheless, the action of A and A*  can be
approximated by operators on ZN imitating, heuristically speaking, the delta
distributions in the derivatives of discontinuous functions by operators ¥

in YN, Following the ideas developed in [14], we need the operators GN

for each point, where the pilecewise linear functions in N may have jumps.

N+
We define kj, Gki ® - , N =1,2,ee¢ by
N- _ N N 3N N ~ 0 eee Ne
8y (8) = (.: ®,2i+1 +.171(.ek,2j+2)g, k=1, j=0,000,N-1
= 2,ooo,p, j = 1’.",N“1
N- N N 3N N
8 () = (— e +——e )&, ko= l,eee,p~-1
kN Tl k+1,1 Thel k+1,2 i ’
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and
N+ N N 3N N .
S8 = e agm1 T 82908 KT Lty 3= LeenN,
k k
Proposition 4.1. (a) For any £ ¢ B and ¢1 > Lz(-h,O; ®)
k=1, j=20,000,N
N- 1 T N, N- .
(4-7) <6kj(g)’¢ >2 =& ¢ (tk_-l)’ k = 29""p—1’ J = 1""’N
k=p, j=1,000,N-1
(4.8) <GE+(€)’¢1>2 = ET¢N(tE_i), k = 1,e0e,p, § =1,000e,N,
j .
In (4.7) and throughout the paper, we use the notation ¢N(tg;) for the

left side limit of ¢N at tzj.

(b) The norms of the §-operators are

k=1, j =0,000,N-]

ncgfn = 2(%-)1/2,
J k k = 2’.'o’p’ j = l,oao’N—l
usﬁgn = 2(rN Y2 a1, eee p1
k+1
N+ N [1l/2 .
"(Skj" = z(r_) / s k = 1,.oo’p, J = l’o..’N.
k

Proof: (a) Let 1<k<p and 1 < i <N-1. Using (4.5) and observ-

ing that

we get
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0
N- 1. _ N 3N N 1
<8 5(€)s07>, = [ & TC ey 2541 T Bk, 24400 (8087 (8)ds
=h k Tk
N N
=8 (b 2541 T bk,2542) T E ¢ (e
The proof for k = 1,000 ,p~-1, j =N and for 5?6 is analogous. The
N+ -
statement on ij follows similarly from the fact that ek ,24- 1( ) 1
N N = - = L N ] = LR N ]
and €L 23( .) I, k=1, ,Dy ] 1, ,Ne
(b) Since the basis of YN is an orthogonal set, we have
N+ 2 2, ,N .2 3N,2 N 2
8y (BN = g | ((?1:) e 25-1" * (——) e 241 )
T Tk

The proof for Git is analogous.

J |

Next we establish convergence results for the piecewise linear projec-

tions of sufficiently smooth functions,

1

Iy

Lemma 4.2: For ¢1 € {wl € L2(—h,0; ®) |y € w2,w<1k; rY),

k = 1,0e0,p}

C .
(a) n¢N - ¢1n°° < __12 u¢lum
N
N = 1,2,000

(b) i e - pelu ﬁlnlﬁ .
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The constants

€1y Cp do not depend on N 1

or 47,

Proof:

The proof 1is based on an application of the Peano Kernel Theorem
(see for instance [20], Th. 1.3). Tet s ¢ Igj and define the linear func-
tional Fs: szw(Igs; ) > ¥ by

P D) = 0'(s) - V(s

Fs(p) = 0 for all polynomials p of degree one, so the said theorem assures

1 1 =1
87 (s) = oNo)| = [F (oD = B[y ¢ @C-0,a0)]

(4.9) kj
21 ~1 N
< 'IN ] (r)(s—r)+dr| + '(IN ¢ (r)(--r)+d1) (s)]
I I
kj kj
where s -1, 1<s
(s=1), = .
* 0 , T > 8
Now
. S . -— o
(4.10) |IN ¢1(T)(s—t)+dr| = ‘IN ¢1(T)(S-T)dT| < %.(%)2 u¢1nw,
I. t, . -
kj kj

where T = max{rk, k = 1,e0¢,p}. To estimate the second term in (4,9), we
define
(4.11) vl =7 ! N Le) = 1sewh

. =Jy ¢ (O(t-t) dr, te I.» ¥ (t) =0 elsewhere,

I 3
kj

so that

L
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IUN ;l;l('r)(°—'r)+dr)N(s)| = H}N(s)l
I

kj
p 2N
_ N N N N
) |mz-l 121 emz(S)wmz‘ 5-|¢k,2j—1' * |wk,2j ’

But from (4.11)
)I/Z(rk)S/Z

wluz < (%6- T u&;lum.

Hence, by (4.6), statement (a) follows. Similar methods for the functional
GS: Wz’w(IN s B » B, Gs(¢1) = D¢1(s) - D+¢N(s), and the fact that

kj’
pryl = %?‘- eg 23—1"{ p;  yield (b). -
k ? B
As an immediate counsequence from Lemma 4.2 (a), we see that the sub-
spaces zN  defined in this section satisfy hypothesis (H3), since the set
(6%,01) ¢ 2 l ¢0 e W, 4! I € w2 (T, B, k = 1,e00,p} is dense in

. k
M2 and gp™n =1 for all N,

4,2 The approximating semigroups and their generators

Definition 4.3, For ¢ = (¢0,¢1) e 2V  we define

D 0 -
%8N = (age® ¢ T agln) + [ ()l (edas, 0Tl + 6N (00 - slcon)
k=1 -h

N N-1

p—-1
N-, 1 N 1, N- N~-, 1 N 1, N-
LD D N N C R R0 B € D I N N C B C D I M (D DD
k=1 j=1 K kj kj j=1 P Pj PJ
Since D+¢1 e YN for ¢1 e YN it is clear that AN  ig a 1linear
N N

operator Zz° + 7,
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Lemma 4.4: The adjoint of AN is given by

T O\N

WD @0 = (e + v, al 1% o cay”

+1 ¥
=DV T s (A
k=1

p-1 N N-1

N+ 1 N- 1, N N+ 1, N- 1. N N+, 1 )
+ kzl jzl Sy ¥ (tkj) - Wi )+ jzl 851 (¥ (tpj) ¥ (tpj)) s on(¥ (-

Proof: FEvaluating <(w0,w1),AN(¢O,¢l)> for V,0 € zN we get by

Proposition 4.1,

0T

p P

00 ) aeteh) = T <l ,eh,
k=1 k=1

and, since ¢1 ey,

0 1 T 0 .1 T ON
[0 a0 oas = <ar 0”8, = <cal vH b,

Integrating by parts the term involving D+¢1 yields

141 PNl oy nT PN L NLT1,.N 1 1
G,D o>, = ) v(e, e (s) = T Y (e D)o (e ) - <KDY LD,
2 k=1 320 K k=1 j=1 4 K 2

Furthermore,

@', sl 60 = 61>, = 7 - ot 0T = v 0% - v s o,

so that
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<A @01, 5 = age® + v 07O

M
P T ON  +1 .1
+ <] &y (Ak¢ )+ (Ap ¥ = DY L8>, + A,

k=1

where A is given by
pN—l P
b=l @% @ + )T wleDR%e - ) 2 HCREN TS
k=1 j=1 k=1 j=1

. ; whieny (ot (eny - ol (el D), + Z w!, (¢1<tN y = o YD)
k=1 j=1 kJ kj j pj Pj 2°

The last two sums are transformed using (4.7). Observing ¢1(0') = ¢1(0)

N N
and tkN = tk+1,0’ k = 1,000 p, then arranging A appropriately we get
1 N
T,1, N
D I R CH IR R CHR PRSI
k=1 j=1 ]

N1 1 T 1
+ ) h (t ) - (t )) ¢ (t ) -~ ¥ (-h) ¢ (-h)
j=1

and the result follows by applications of (4.8).

The next lemma shows that the operators AN satisfy the uniform dissipa-

tivity condition (H1) in the space M: defined in Section 2.

Lemma 4.5: For all N and all ¢ ¢ ZN, <AN¢,¢>g 5_w“¢ﬂ§, with

w given in (2.4).
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Proof: As in Proposition 4.1, it is easy to verify that, with respect to

the weighting function g(s) =p -k + 1, se I,, k= 1,ee¢,p, we have
k

N- 1 T N, -
<610(E),¢ > 5, =pE ¢(0),

L
g
N- 1 = — T N N- - LN N ] -= oo -
<6kj(£),¢ >L2 = (p-k+1)g ¢ (tkj)’ k 1, »Pri=1, s N-1,
g

N- 1 T N, - ~ _
Bn(8)sd > 5 = (k)" ¢ (~h ), k = 1,e00,p-1

L
g

for all ¢1 € Lz(—h,O; H') and £ ¢ ' From these equations and the

definition of AN, it follows

N 0.T,0 ., ¥ 1 0
<AT0,0>, < (Ap e + kleAkl l"C-h, )1 Jo”

0 p N
+ 1| J AOl(s)¢1(s)ds| |¢0| + ) (p-k+l) ) IN (D+¢1(s))T¢l(s)ds
-h k=1 =1 T,
0 . 1,.\\T .1,.- p N 1, N, .1, N-\.T .1, N-
+p(d -6 (0)) ¢ (0)+ § 7 (ot 1) (7 (ty ) = ¢ (5 1)) 67 (1 )
k=1 j=1

p=l - -
T R IR CHB IR UM PLIPRI T
k=1
for ¢ €27, Using

- 2
[y OflnTelsas = 3 foleey™ pI? - 1ol

k,j-1
I

and the inequality ng 5_%-(]5]2 + |n|2), E, ne R, we get
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N 0,T0 1 ¥ 2
Wor>, < Ul v g ) Unl 1en, 4 Jetenpl D

k=1
) N-1 -
+ UAy 0, ||q>lu2 II¢HM2 +%-kzl (p~k+1) jZO |¢1(tgj)|2
1 B oL N2 0, 1.1 1,12
sz LoD e, D17 +eCle”] fo (0] - 67(0)]%)
k=1 j=1
1 P MLy N2 1P Nl -2 ‘
+ Y (pk+l) § e () )]f -1 (p~k+1) | o (t, )] |
2 =1 j=1 kJ 2 kzl jzl ki |
p-1 p~1 _
t3 1 Gl R JUNCE RG]
0.T.0 0,2 1 ¥
< (Bg0 )70 +‘2’ o7 |° + ( kzllAk'z + uAOlan) n¢u:

1 P 1 2 1 2 1 P 1 2
+7k£1 lo (-h )] = Zlo (0] -7k£1 (kD¢ (£ )|

- p-l
(p~k+1) I4sl(t:{10)|2 +,}k£1(p-k)l¢1(c{jN)|2
1 Pol 1, N-y2
"zkzl (p=k) fo (t, | < ongl,

because, due to the weights, all terms except the first three neutralize each

other,

Looking for appropriate sets to be used in (H2) and (HZ*), we define

D= {(61€0),61) e M2 | ! & WHr¥(=h,0; ¥}
and

D* = {(lbo,¢1) £ dom A* ‘ 'lpl € Wz’w(lk;]ﬁl), k = 1’-oo’p}.
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The following Lemma occupies (H2) (ii) and (12%) (11).

Lemma 4,6: (a) There 1is a constant ¢ > 0, such that for all N and

all $ €D

1aNpNy - Al <5 TR
*
(b) For all ¢ e D
* *
H(AN) pN¢ - Ayl » 0, as N » o,

Proof: (a) From the definition of A and AN we have the estimate

P
HANpN¢ - A1 <) IAkI |¢N(-hk) - ¢1(—hk)|
k=1

0
+ f IAOl(s)(¢N(s) - ¢1(s))lds + HD+¢N - D¢1H2
-h

N- .0 N N, .1
+ 80, (C (0))||2 + 18 (¢ )n2

where

N1, BN o n N N, N- Pl N NN N, N-
A7(7) = kzl 121 Sj (07 () — o7 (e ) + kzl S (0 (Ep) = ¢ (0D

_ N1 N, .1
= A1(¢ )+ 8,080).

By proposition 4,1 and Lemma 4.2 for $ €D this yields

c c [od .
1Ay - Apl 5_(_; +.NE + 2(2_)1/2 _;) H¢1Hw + HAN(¢1)H2
N 1 N
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with some constants ¢y, cp, c3e Since ¢ is continuous on [-h,0] one
has
C
N, N N, N- N1 4 -1 _ _
Lo (erg) = ¢ (e < 2187 = 6 o Sz 1000, k = l,e00,p-1
so that

N, 1 N,1/2
IIA2(¢ M, < 2(2)

(p-1) °°;St n&lnw,
N

with 1 = min {rk, k = 1,s¢+,p}. Taking advantage of the orthogonality of

N N .
e11"'°’ep,2N in L°, we have for ¢ ¢ F
p N-1
N_
Yy sk.(a)ug < Ap(N-l)-g ]2,
k=1 j=1 =
Hence,

Vo, < 200-1 HY2 0 nax NNy - $Nal) < fomst gl
1 2 —~ r _ kj kj — N ©
- k=1,ece,p
j=1,.o.,N

This proves (a).
(b) From Lemma 4.4 and the definition of A* we have
1A N - Ay < IAgwo + N0 - (age” + ON
+ n(Agle)N - Aglwonz + uD+¢N - D(\p1 + pil Aiwox[-h,-h ))“2 + uAN*(w)uz,
k=1 Kk

where .
P- N

N* N+ , N, N- N, N

AT (W) = D R C TR € S B TN €

K k=1 g=1 k] k3

M)

I ~1

N+, T O
1 SenCAY ) +
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-1
M NNy - N N 3y NN
Loy ey -y (t,0) = 6 L (-h).

N
+
=1 pj

Since (H3) is valid H(Aglwo)N - Aglwoﬂz + 0,

N
~1 N +~1
v

* . ~ p—l
Ifyen, [0 - plo] _<_5°—'2ﬂ Ilzplllm. Defining §! = 'y

=1
we have Yy e Y for all N, » €

T 0
MY X[=h,=h,)
=0 and ¢1 + 9 wl’z(—h,O; r)

*
if Y € dom A , Hence
/2

it Y - pep gl ¢ comse oty

iy - D(¢1+$1)u2 < (! q

by Lemma 4,2, We arrange

-1
N* N+, . T O N+, N P N+, T O N+, N, N- N, N
AT = [80(AwT) - 8 LT (-h))] + k£1 (AP + 8 (e ) = v (e 0))
+ EIEIGW'(NcNW -9Vl = A )+ A% @) + A
1 sty ky W Ey) V() = A G g (¥ 3 (¥

Recall, that for ¢ € dom A*, ¢1(-h) = Agwo and wl(‘hk) - wl(—h;) = Azwo’

k = 1,e¢e p-1, so that

[

N% s 1oy N N y1/2 41 _ 4N t ol
ha o, = 18 N (-h) =y (=h)n, 2 (&) -y, <SSR

p N

and

N* L 1, - N, .- N
1a, W, = nkzl Sy (¥ (-h) - ¥ (-h) + 4 (-h) - ¥ ('hk))"z

< aH/2

1 N const 1
(p=Dwy™ -y < .
= 372
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*
Finally, Ag () can be estimated like AT in part (a), namely

A§*(¢).§ const yuly , y e .

N |
In order to apply Theorem 3,1 to AV and (AN)* of this section, it

remains to show (H2) (i) and (HZ*) (1).

X *
Lemma 4.7: The sets (A-A)D and (A=A )D are dense in Mz,_iﬁ

A >w as given in (2.4).

Proof: Due to basic facts in semigroup theory, we know from (2.5) that
(e ¢t| Re X > w} is contained in the resolvent sets p(A) and p(A*).
Hence, 1f A > w, the operators (A—A)_1 and ()‘—A*)-1 exist.
Therefore, given v e B x cl(-h,0; ) the equation (A-A)¢ = ¢ has a
unique solution ¢ = (¢1(0),¢1) ¢ dom A, which by the definition of A sat-
isfies A¢1 - $1 = wl. But this implies 51 = A¢1 - wl is continuous and
differentiable., 1In fact, ;1 = A&l - &1 is continuous, so that ¢ € B x
C2(-h,0;I?). Hence the dense set R x cl 1is contained in
(A-A) (B x ¢2  dom A), which is a subset of  (A-A)D.

1

The same arguments applied to P 1 € Cl(Ik;EP), k = 1,00¢,p, reveal

that (A—A*)D* is dense, if A e L (B;cl(-n,0; B)). Let

01
ADw, ¢ € Mz, 0<e <t and Ay, € L (F;L2(-h,0;®)). There is a
Agl € L(BQ;CI(-h,O;BP)) with corresponding generator A: satisfying
* * c * -1 -1 *
WA" = Al = Ay - AT IEEPIE eC4uen 1(x=A ) 1) 7, rep (),
LM L(® LD
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* - % -
and 1D <2 10-ADTH (ef. [15], V. The 1.16). Let  y_e D
% *
such that H(X—Ac)wc ~ ol < €. Then u(A—Ac)wcH < 20410 and
18" 1< (=A") b or A = AT e+ eanen 1A Ty iy
‘JJC o __“ : c \I)C o | - 0 IJJC e € ¢ ﬂ\vcl
* - * * —
< 2e, because L UISS H(-A ) Ly TO-A DY b < 41-A ) L oM. This
* %
proves the deansity of (A~-A )D . .
The proofs of the Lemmas 4.6, 4.7 do not use additional smoothness assumptions
on Ayp as it is the case in [12], [13], [14].
*
Summarizing, we can now say that the semigroups SN(-) and SN(-)
NN Ny* N .
generated by A'p and (AM)"p converge to the hereditary semigroups
*
S(e) and S(s) in the sense of Theorem 3.1, Also, Theorem 3.3 holds so
that for the finite time horizon control problem we can approximate the
Riccati operators and the optimal controls by solving the finite dimensional

systems (3.4), (3.5).
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4,3, Vector dominance preservation

With respect to the basis e ,eN ,o--,eN of ZN and the canonical
0’711 P,2N

basis of T the matrices [AN] and [AN*] representing AV and AN* are

given by
- % -

(4.12) (A = @MY and AV = (@7l
with

<e0’A e0> sessecsescnse <e0’A ep,2N>

aY = L N = 1,2,000 .,
“N N N N*N
<ep’2N, A e0> esesscces <ep’2N,A ep’2N>

For the computation of the entries of HN, observe that the derivatives of the

basis elements are given by

+ +
d N d N _ 2N N _ <
ar ek,Zj"l = 0 and ac ek,zj = ?; ek,Zj-l’ k=1, sPy § = 1, »Ne

Written in the simplifying nxn matrix notation we get for example

NN IN N N- N-
Aoy 95 = (B 940 T, k251 Sig (1) = 8y 5-1(D)),
k = l,o-o’p’ ] = 1,"',N—1,
with
0

N N _ .
Ay = | B (Sdei(s)ds, ko= Lyeeeip, § o= 1,eee, 2N,
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The inner products in uN

are evaluated using the orthogonality of the basis
elements and Proposition 4.1. The result is the n(2pN+l) square matrix

-

- N N
A0 AI_—Ap
k. h
0 k h
where
N N N N N N
A = Oy Ag oot A on-2 Akgon-1 T A Akan T A
is a < 2nN  matrix, k = l,ees p, ko = (%) a 2nxn  matrix and
h = :% _%], k = (% :i) are 2nx2n matrices. Humerical algorithams

solving high order systems with coefficients [AN] might take considerable
advantage from the fact that HY  has band structure (not the case for the
Legendre methods [11], [12], [13]) and that QN is diagonal (not the case for
spline methods [14]).

In the following, we exploit the structure of the matrix [AN] in order

to deduce the VDP property and (H4) for our piecewise linear approximations.

Lemma 4.8: If there is a c2 >0 independent on N such that for
N

all $ e Z

-]

sl fae < e, 1012,
J <

then
(-]

f usN(t)¢u2 dt < ¢, u¢u2, b € zN,

0

for some ¢ Z_O not depending on N or 6.




N N N
Proof: Let b e zN and set sN(t)¢ = eA P t¢ = eA t¢ =
2N
(WN(t), wN(t)) € ZN, t > 0. With wN(t) = § y eN. wN.(t) the
0 1 =~ 1 k=1 j;1 ki kj

coefficient vector col(wg(t),le(t),---,wg 2N(t)) is the solution of

WNee) )
0 0 N 0
d le(t) N le(t) "ol = ¢
(4.13) 3t = [A7] , £ >0,
t N N
w . (0) =6, .
kj kj
o) W ()
bwp,ZN ] L P,2N" 7]
A view of the rows of [AN] reveals that (4.13) implies
N __N _ N N N
N __N N N N C .
vkl(t) = ?; aVkl(t) + ;; bvk—l,N(t)’ k=2, ,P
(4.14)
*N - N N N N = eece i = oee
ij(t) = —E—' aij (t) + E_— bvk,j"l(t)’ k 1’ »P, ] 2: »N
k k
N N N .
ij<0) = COl(Cbk’zj_l, ¢k,2j), k = 1,-oo’p, J= 1, ,N

where ng(t) = col(wE’2j~l(t), WE,Zj(t)) € Egn, vg(t) = col(wg(t), 3wg(t))

and a = (; —;)GB I, b = (; :;)() I. Using (4.6) we get

N 2 4N 2 = coe i = X
(4.15) lvkj(o)l 5;;n¢u ; k= 1,eee,p, j = 1,000,N.

To estimate the solutions of (4.14), we make use of the fact that, if

2 t -a(t-s)
fe L(0,»; B), « >0 and g(t) = f e f(s)ds, t > 0, then
0



g € LZ(O,w; R) and f gz(t)dtls 17 f fz(t)dt (cf. for instance [10],
0 a0
vi. 2.33).
The first equation in (4.14) yields
- at N a(t-s)
N B N t N N
vll(t) = e VII(O) + é e vo(s)ds, t > 0.
.
“N N 1 N

with v (t) = v, (t) - e vi;(0), t >0, we get

o

2
r ) I
~N 2 1 2 N 2 N 2
é |v11 (t)ldt‘s'gf é e |a||v0(t)| dt < const é lwg(£) | “de =

[><]

= const f IVSN(t)¢|2dt < const n¢n2,
0

by assumption, where the constants do not depend on N, Using (4.15) it

follows

©o

(4.16) | |le(t)[2dt < const H¢H2.
0

Estimating the solutions of the other equations in (4.14) by the same method

yields
i |vN .(t)l?‘dt < const ||4>||2 if | |vN . (t)lzdt < const u¢uz,
0 k)] - 0 k)J—l -

k = l,e00,p, j = 2,00°,N
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oo

-]
f |v§l(t)|2dt < counst H¢H2 if | lvN
0 0

k_l,N(t)|2dt £ const H¢H2, k = 2,000,p.

So, from (4.16), we get by induction

é |Vgi(t)|2dt_5 const n¢u2, k = l,ese,p, j = 1,000 ,N,

But this proves the assertion of the lemma, because by (4.3)

N 2 N, \12 N TN 2 . Tk | N 2
1S (L)l EAGIRIEES) ol v ’ (O] |wk’2j(t)‘ ]

k=1 j=1

p N r
ENCOINEI )
k=1 j=1

so that

. -] o

2 N 2
lal [ v . (£)]|%dt
1 0 kj

o P T
J s (e)erlde < f |wg(t)!2dt + ) ﬁE
0 ~ 0 k=1

I o~ 2

i

£ const H¢H2.

Corollary 4.9: The semigroups §N(-) generated by

- *
ZypN = (AN - R 1(BN) IIN)pN satisfy hypothesis (H4).

Proof: Since BYV:T » 2N s represented by the n(2pN+1)xm matrix

(4.17) (8N = col(B,,0,+++,0),




— )

the matrix [KN] differs from [AN] only in the first n rows.
Therefore, (4.13) with (aM; replaced by [ZN] again yields (4.14), The

rest of the proof remains unchanged.

Besides for (H4), the VDP-property of the piecewise linear approximations

together with the results of the next section will be used to deduce (HS5).

4.4 The eigenvalues of the approximate systems

It is known that the spectrum of the generator A coincides with its

point spectrum namely o(A) = {X ¢ ¢ | det A(X) = 0} where

P -khk 0 X
A(A) =AL - ) A e - A, (s)e Sds, 1 e ¢.
k=0 k -h 01

The eigenvalues of the finite dimensional operators AN are the zeros of

det(xIN - [AN]) in ¢. 1IN denotes the n(2pN+1)-identity matrix. In order
to calculate the determinant of the characteristic matrix
AN(A) =1 - [AN] in terms of rational functions of A, we transform
AN(A) by elementary row and column operations.
First, for all k= 1l,see,p and j = 1,ee¢¢ N multiply AN(A) from

the right by the matrices

the only nondiagonal identity wmatrix being at the position ((k,25-1),

(k,2j)). The resulting matrix is multiplied from the left by



N N N
1.0 C110 Clz—————- 0 CpN
0
N _ N 6N,-1, N N
c = 0 with Cy, = ( + -"—1:) (Ak,zj—1 + Ak’ZJ)
I
so that the first row of blocks now is given by (BN BN 0 BN o — 8Y 0)
0 "11 12 pN

with

N 3N N

BO = AL - AO - ?I C12

N N 3N N 3N N

= - 4+ — - = ee e i = L3 ) -

By = A, 25-1 T, % 7T G ko= l,eee,p, = 1,000,N71

N N 3N N 3N N

B, =-A - ., +—=C . - —-C , k= 1,00e,p-1

kN Ak Ak,ZN 1 ry kN Tl k+1,1

N N 3N N
Then multiplying from the left with

- R

’ k = 1a°'°)paj=l9"°N

where the only nondiagonal block is at ((k,2j-1),(k,2j)), yields a matrix

whose diagonal looks like

N
9 0 0 0 7
3N A+ 0 0
r rk
®M1. with
i (x) 0 O (x) 0
k K
-5 o F ol
Tx K k




4=

n0) =L - My + &t
k Tk k
(4.18) , k= 1,000 p,
N,y _ N
q (A) =2 + p, (V)

We define
N N N -1
D, = (-B A))
N ( pN)(qp(

N N N -1 N N N -1 _ . 5
(4.19)
DN =

v = OB @O0 w0l el 0 @EONTE, k= 1yeee,pe1,

Maliinlicatioa Srom che left with

subiracts pT(A)DT1 from the upper left block and sets all other entries in

the first row of blocks to zero. Thus

P
(4.,20) det AN(A) =[ I (det qE(A)I)N(det(A+ gE)I)N]det Ag(l),
k=1 k

where

3N N N, . N
27'012 = P (0D,
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Note that these transformations are possible, as far as A + gﬁ-# 0 and

k
qN(A) #0, 1l.e., X # - N and A # 2N + i Y2, k = 1,es0,p, in particular
k Ty 2" Ty ’
if Ae {}e ¢|Re A 2> -p} and N 2:%& for some p > 0, Further note,
if Re A > -p, then det AN(A) =0 iff det Ag(k) = 0, provided
N Z_%E-. From (4.19) we get by recursion
P N m-1 N
N N N N N N
| Mol = 1 (I GBaEtant 1 ajont + 1 Grp@ont,
} m=k+1 £=1 i=k =1
k = l,ooo,p
where
(4.22) tNA) = PR ONTY, k= 1,eee,p.

Using this in (4,21) yields

N N N N N
} AO(A) =AT - L (A) = AL - (LI(A) + Lz(x) + L3(A))

with
N Pk NN
L(A)=A + ) I (r;())
1 ot L L A
N p k=l g N ¥ oy N, i
L) = )Y 7 (r ;) Y A . (r, (X))
2 k=1 1=1 i j=1 k,2j-1""k
(4.23)
N P o3y eN-1 < on, Ny N N, -1
L.(A) = ) = O+ —) m ()" ] ( .+ D, (X)) -
3 k=1 Tk Ty 1=1 i j=1 Ak,ZJ 1 Ak,ZJ k

~(ryondy.




Proposition 4.10, (a) With the projection V: M2 5> W introduced in (H4)
we have
N,~-1_* N -1 N
(VAL - A7) v ] =00 7, xep(A).
-r, A
(b) (oMY > e and 00D > 1, k= 1,eeep
as N+ =, uniformly in A on bounded subsets of ¢.
() If ReA>0, then |r, ()] <1, k=1,000,p. For any 5 >0
there exists N{(p) such that for all N > N(p) and all A e ¢ with
Re X ¢ ["'9,0]
N N _
Irko‘)l s Irk( p)la k =1, sPe

Proof: Expanding the determinant of AN(A) by elementary operations,
we have “seen that TNAN()\)SN = UN(A), where UN(A) is a lower triangular
block-matrix with Ag(x) in the position (1,1) and SN,TN are regular
matrices given by SN = E g SE. and TN = pN g g TN.CN. The

k=1 j=1 k=1 j=1

first column of blocks in TN and the first row of blocks in (SN)-l are of
the form (I O 0). Thus, the application of these transformations to the
equation AN(X)(wo*——————*)T = (¢OO O)T yields

) @ ——nT = T2 005V (s T O T -

= ™% 0T = (4% 0"
or
(¢O* )T = (UN(A))_l(cbOO-—————O)T for all ¢O,w0 e R,
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This implies wo = (Ag(x))"1 ¢°. But

- %
vaor - a7y ¢0

- vorI - AM16%0) = 1Yo elo——oT

T

= WO —nT =40 = agonTh,

for all ¢0 e B, and this proves (a).

From (4.18), (4.22) we have

6N2 ~ 2Nr, A r, A 3r2A2
N k k" -1 k -1
1) = — g7 = A5 (1 — 77)
6N" + 4NrkA + A Ty 6N" + 4Nrkl - 2rkk
k= 1,0es,p.
This proves (b), because, as N » =
2.2
r, A -r, A 3r, A
(1+ —%—) N, e k and (14 5 k 5 2) N,
6N” + 4Nrkk - Zrkl
uniformly in A  on bounded subsets of ¢.
Finally, an explicit computation of lrg(x)|2 and its derivative with

respect to Rex  shows (c).

The properties (b) and (c) are essential for the convergence of the

matrices Ag(x).
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Neyy =
(b) If detA (1) =0 and Re X >0, then [A] S'kio |a ! + 3 "A01"L1°

For any p > 0 there is an N(p) such that for all A with

Re A € [-p,0] and all N > N(p), det Ag(k) =0 implies

Pk phk oh
(A} S'kéo 27e" A |+ 208" TiAg L

L

Proof: Set Ag(x) = I - LT(A) - Lg(x) - L§(A) as in (4.23).

N p k —rix P —hkA
Ly(A) » A+ ) I e = ) e
! 0 " k=0 e
and
p -h A N 0 .
lim Lg(x) = Y e k=17 im y AOl(s)ei 2._l(s)(rg()\))st
N>oo k=1 N+ j=1 -h »<J

uniformly in A on bounded sets,
" Let se I,., To each N there is a unique j such that s € IN . 3
thus
- N jN
e lim [ A, (s)(xr, (1)) “ds.
01 k
1 N+ Ik

From O S.jN + N(hk_1+s)/rk.s 1 and Proposition 4,10 (b), it follows

-N(h, . +s)/r j
Lin [(rp(A)) <) ko (YN N =
N3co
-N(h, - +s)/r jytNCh, — +s)/r
=un (o) T Ra - o™ L TR 2
N+
hence
i ~N(h, .+s)/r (h, _+s)A
1im (rE(A)) N lim (rg(x)) k=1 k_ o kI .

N+oo N+
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The convergence 1is uniform in A on bounded sets and in sel and

dominated with respect to s. Therefore

P —hk_lk (hk_1+s)x 0

1im Lg(k) = ) e / AOl(s) e ds = AOl(s)eASds.
N+oo k=1 Ik =h

For Lg(k) in (4.23) we get

k-1
1Lyl < z |— O+ --) oo rjool® [ 3y, (N0 lae [y~ - 1
i=1
k

((ri(x))-l is defined 1f _3_N_ * A’ k = l’ooo’p), sO that Ll;(k) > 0
k
uniformly on bounded sets, If det Ag(k) =0 then A is an eigenvalue
N N N
of L' (A). Therefore det Aj(X) =0 implies Al <Ly +
ILg(A)I + |L§(A)|. So (b) 1is proved by similar arguments as (a) using
Proposition (4.10) (c¢) and the convergence of rg(-p), (rg(—p))N

J
N
(rp e Y -
For the investigation of the asymptotic behavior of the eigenvalues of

A", N> o we now use the following consequence of Rouché&”s Theorem:

Proposition 4.12, Let £, fN, N = 1,2,00¢0 be holomorphic inside and on a

closed bounded contour T __¢. If f has no zeros on T  and if £ 5 f

uniformly on I, then there exists an N, € N such that for

0
N Z_No, fN and f thave the same number of zeros (counted according to their

multiplicities) inside T.
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For p >0  define Gp = {1 e ¢|Re A > -p}. Since det A(A) is

analytic on G and its zeros lie in {A ¢ ¢§|- p < Re X X0 and
p  phy oh
Ix] < ) e lAk|+e tA. 0 YU {re¢lRe x>0 and
— 01 .1 -
k=0 L
] < ‘Ak‘ + 1A .1 .}, the number of eigenvalues of the generator A
= k=0 01 L1
in Gp is finite. Similarly, from Lemma 4,11 (b) and the notes following
(4.21) we see that, 1f N 1is sufficiently large, the eigenvalues of AV in

Gp lie within

k

P Phy oh
K ={iefl-p<ReA<0 and [Al < ] 27 “[A| + 20" A
P - - - =()

LY,
01 1

P
U{A € C|[Re A > 0 and |[A] _<_kZO lAkl + 3 "A01"L1}'

Although these estimates are not accurate, they lead to rigorous results given

in

Lemma 4.13: (a) If AO is an eigenvalue of A with multiplicity Kk,

then for any e >0 (small enough) there is an Ny such that each

AN, N _>_NO, possesses k eigenvalues in B(Ao,e) ={re¢ ' B -AOI < e}.

(b) Let p >0 and Agp 1= 1,000,8 be the eigenvalues of A in

Gp. For any e >0 (small enough) there exists Ng such that the

L
operators AN, N Z.No’ have no eigenvalues in Gp\ W) B(Ai,s).
i=1
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Proof: Assume that Ao is the only zero of det A(A) 1in BZAO,ei.

SB(XO,E) is bounded and det Ag(k) > det A()) uniformly on bounded

sets, Thus, (a) follows at once from Proposition 4,12,

Choose, without loss of generality, € > 0 such that det A(X
2

'r_ ’

) has no zero
P

2
in BGp U U aB(li,e). We know from (4.,20) that, if N >
i=1 L
an eigenvalue of AN iff  det Ag(x) =0, Write Gp\kj B(Ai,e) = G1 UG
i=1

A e G is
p

2!

where

L [}
- - c
¢, = (Gpﬂxp) \ il=;1 B(A;,e), G (Gpﬁxp) \ 181 B(A,€)e

Gy 1s bounded and BGI contains no zero of det A(}F). Thus, there is
20 such that for all N Z_Nl det Ag(k) has as many zeros in

Gy as det A(X), that is det Ag(k) has no zero in G;. Since

an NI_Z

|~|

G2 gl(g, there 1s no eigenvalue of AV in G2, if N 1is sufficiently

large. -
This shows that the eigenvalues of A are approximated by the eigen-

values of the operators AN, Moreover, given e >0, let p e R and

Ai’ i = 1,00¢,2, be the eigenvalues of the hereditary system with

Re Ai 2P Then the piecewise linear approximations do not have eigenvalues

in the right half plane Re A > p outside the balls B(Ai,s), 1= 1,e00,8,

provided N 1is sufficiently large.
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4,5, Uniform stability

From the results of the previous section, we conclude that, 1if S(s)
-mot
is stable, i.e., #S(t)I < Me with some M, wg > 0, then for all

w < Wy there are an N@ and constants My such that for all N Z_Nm
(4.24) 1sN(edn <Mt

In order to get uniformity with respect to N on the right hand side of these
estimates, we follow an idea given by K. Ito [12] in connection with his
Legendre-tau approximations. The idea is to establish uniformity in (4.24)
for one special no—delay case and to 1interpret this special case as a
perturbation of the general situation.

Let us consider the equation x(t) = -x(t), t >0, in K  as if it

were a functional differential equation with p delays, demanding the initial

condition (x(O),xO) =¢ € M2. We approximate by our piecewise linear
scheme, denoting the approximating generators by Ag. They are given in
Definition 4.3 where A0 = -1, Ak =0, k = 1,e0e.p and AOl(o) = 0, The
representation [Ag] is a lower triangular block matrix w1t§ -T 1in the
left upper position. Therefore the first row of blocks in e[AO]t is given
by (et1 9 0). Hence, for all ¢ ¢ zVN
N N
ve o] - iuo(e[A"]taN(cp))l = Je g = eTHo"l < eon.

Thus, by Lemma 4.8, there is a ¢ > 0 such that

o ANt

J 0 ¢u2 dt 5_cﬂ¢n2, b € zN
0
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and by Lemma 3.4 there exist counstants My oy >0 such that for all

N = 1’2’000

Remark: Guided by these arguments, one easily sees that the spline
approximation scheme presented in [l4] does not have the VDP-property.

Because the first row of blocks of the matrix representing the spline genera-

s, N

tors AO is also of type (-1 0—0) one gets for all ¢ in the
s, N
At
s, N 0 0 -t
spline subspace z°, (e ¢)°| < e ngt, as above. Thus, if a spline
SAgt -et |
analog of Lemma 4.8 holds, then by Llemma 3.4 e lsZNII < Ke , for

some K, € >0, independent of N. But this contradicts the peculiar

eigenvalue behavior of the spline scheme (see [14], Prop. 5.13).

~wat
Lemma 4.14: If uS(t)I < Me 0 , t >0 for some M, A > 0 then for

all w < Wy there exist Nw and M such that for all N _2 Nw
1sN(e) N < W™t £ > 0.
Z
Proof: let 0 <w < W We have seen in Lemma 4,11 that there is a

constant ¢ such that ILN(—m+iT)| {ec,t1e R if N> N{w). It follows

N -1 1
'(AO(‘w‘FiT)) l im—'—:—c— for l—u)""i‘l" >c

(det Ag(-uﬁiT) #0 if N 1is large enough). Thus, from the uniform conver-

gence of Ag()‘) to A(}) on the set {)\ = —y + i‘r| |)\| < c}, we have



-54—

(4.26) |(Ag(—w+ir))—l| <Y, Te R NN

with some Nw e N and vy > 0,

Define Ag = ol + AN and let ¢ € zN, The trajectory e

the solution of

2(0) = Agz(e) = Alz(e) + (AN = A)2(8), €20, 2(0) = 4.

Equivalently,
Agt Agt t Ag(t—s) N N Ags
e ¢=e ¢+ ] e (AO - A)e = ¢ds,
0 w
hence
Ath Agt t Ag(t-s) x N
e ¢=e ¢+ [ e V £ (s,¢)ds,
0
N

A s

where fN(',¢): R+ B 1is given by fN(s,¢) = Fe 0 ¢, s> 0

F: M2-> 7,

with

0
(4.27) Fy = (I + wl + AO)xp0 + f Akwl(—hk) + f AOl(s)wl(s)ds,
k=1 -h

because the Lz—component of (AE - Ag)w vanishes for all

(4,27) and (4.25) it is clear that

(4.28) PENCe L9 2 n. Skil
L7(0,»; B ") M

for some « > 0 ot depending on N. We write

Y € ZN.

From




~55—

(4.29) Ve ® o =Ve "¢ + y(t), £ >0

with N
t A (t-s) ,
w N
y(t) = f Ve V £ (s,4)ds, t > 0.
0
g AV(t-s)
Letting f(s,0) =0, s S 0 and e ¥ =0, s>t or s <090, we have
N
Ae

N

) e tHR BYNLA(R B) and by (4.24) e e LY(R Lz
f\LZ(HQL(ZN)), if N is sufficiently large. The calculation »f the Fourier-—
transform y(e¢) of the convolution y(s) yields [10, (21.41)]

Al
e ® vy T (NG, (1) =

;(T)

N
w At -
= eI “vtae (8N, (1) =

V(~p+it-AN"1 (N8 (1), T e R

By Plancherel”s Theorem (cf. for instance [10, (21.53)]) and (4.28), we get

=]

/ |(fN(~,¢))A(r)l2dr = IfN(t,¢)|2dt_§ <2 112,

4
-0

Thus
[ Iy 2de = [ ]3] % <
0 -

1

< [ 1A T2 EN G () Par -
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-]

[ 1@yorie) T E 900 (0 e

-—C0

by Proposition 4,10 (a). Therefore, from (4.26)

-]

f 1y(t)lzdt Syznzwuz, N> N
0

and, by (4.29), (4.25) and Lemma 4.8

o ANt
[ ne® ET < const 1012, N >N, 0c¢ 7N,
0

Lemma 3.4 thus ylelds constants ﬁ, e >0 not depending on N, such that
I = le

ZN lZN — - w -

So, 1if the hereditary semigroup S(e) is exponentially stable with

wt, At
e e ’

some decay rate Wys it is approximated by piecewise linear systems with

decay rvrate arbitrarily close to Weye

Another immediate consequence of Lemma 4.14 is

Corollary 4.15: The semigroups §N(-) generated by

*
B H)pN satisfy hypothesis (H5).

Proof: If the hereditary system 1is stabilizable, there exists a

solution il of the algebraic Riccati equation, and the closed loop semi-

1

- _ -1 %
group S(e) generated by A=A-BR BI is exponentially stable, The

approximations to S(+) are actually given by ¥N(.).  Thus the previous
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lemma yields constants M, w > 0 such that

for all N sufficiently large,
Summarizing, we have proved that the convergence statements of Theorem
3,5 are valid when the piecewise linear approximation scheme 1is applied to

infinite time horizon hereditary control problems,

4,6, Fxamples

Testing the numerical performance of the approximation scheme developed
in this paper, we have employed it in several examples and compared the out-
comes with the results produced by other schemes. As far as these examples
are representative, 1t turned out that the piecewise linear and the first
order spline approximations [14] are of the same numerical accuracy (for the
same approximation index N), but both are inferior to the Legendre methods
[11,13].

In the case of the finite time horizon the Riccati differential equation

& + 1eaH o) + w1t -

- e IR BN TN + i =0, ocegr,

mN(ry1 = (V]
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is transformed, by taking FN(t) = QN[HN(T-t)], to a standard Riccati matrix

differential equation

%E ey + (AN« VAl -
(4.30) VYR s WY =0, o<

N
o) = 6"
Observe that the selfadjointness of HN(t) implies [IIN(t)]TQN = QN[HN(t)]
and hence FN(t)T = FN(t). Since BN, wN, 6N refer exclusively to the F'-

component of ZN, we have

(8] = col(B,0,+++,0) ¢ R 2pN+1)xm

WO 0 — 0
[wN] = T ? e lg(ZpN+1)xn(2pN+1)
| 0 0
Go 0 — 0
0 0
[GN] = ‘ l e T(2pN+1)xn(2pN+1)

Thus (if p= 1, A01 = 0) we can reduce the dimension of (4.30) introducing

the 2nxn( 2N+1) matrices
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FO 0 0 GOAl - GOA1 1 0 0
N _ N _
1‘1 = ’ F2 =
Ale. o 0 0 0
1%0 I-1I

. where Fgy is given by

T -1 T
FO = AOGO + GOA0 - GOBOR BOG0 + WO’

in order to get the factorization

« o ,NT, N
r(o) = (Fl) (FZ)’
This implies ([18], p. 304 ff.)

t
(4.31) ey = (6V1 +f L?(S)TLg(s)ds,
0

L?(t) being the solution of

$e i = Lioa - YR BN )
(4.32)
N N _
Li(O) =¥ i=12.

Multiplying (4.31) from the left with [BN]T yields

Mo e, o<egr

(BTN ¢e) = (B
(4.33)

i8M17r N0y = 8% 716N,
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Solving the n(4n+m)(2N+1) differential equations (4.32), (4.33) we get
[BN]TFN(t). But this is all we need for the computation of the suboptimal
control uN(t) (see (3.6)). Denoting the mxn blocks in [BN]T[HN(t)]

by Bg(t),°°',B§N(t), we have

. _ . N0 .
(6.36) W'(e) = =N M) + Y s?(u)efj(s)xN(t+s)ds}, 0<t<T,
j=1 =h

where ;N(t) is the solution of
(4.35) X(6) = Agx(t) + Ajx(t-h) + BOGN(t)

in . 1In each term of the sum in (4.34), the integration ranges only over

one of the intervals ITi, j = 1,eee,N,

Numerically the systems (4.34), (4.35) were solved simultaneously by an

appropriately adjusted 4th order Runge-Kutta procedure combined with Simpson”s

rule for the evaluation of the integrals.

Example 4.,1. Minimize

2
/ (ul(t)2 + uz(t)z)dt
0

1

I =5 @+ %, + 1

subject to

1 0

x(t) = (? 8) x(t-1) + (0 :

x(0) = xo(t)

1l
~~

jon—y
| S
-

!
ot
A
~t

IA
o
L]

-
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The true solutions  u(t), x(t) (see [2]) and the piecewise linear approxi-
mations with index N = 4,8,16 are presented in the Tables 4.1 and 4.2. The
relatively greatest errors occur around t =1 and t = 2, where the deriva-
tives of x(t) and Tu(t) have jumps, while ;N(t) and ;N(t) are of
course continuously differentiable,

For the infinite time horizon control problem (p=1, A

0

01 ) the
suboptimal control and trajectory are again calculated via (4.34), (4.35)
when HN(t) is replaced by the stationary operator HN, that 1is the
solution of the algebraic Riccati equation (3.7). The transformation

PN = QN[HN] yields a standard Riccati matrix equation

N,T_N

AN TN & rN ANy - rN[BN]R'l[B 1T+ M = o

in B?(2N+1)xn (2N+1), which was solved by the Newton-Kleinman—algorithm as
presented in {18]. 1In each step of this algorithm, a Ljapunov matrix equation
was solved using the quadratic procedure given by R, A. Smith (see also [18],

N

P. 297). The time independent mxn  blocks Bj’ j = 0,00+ ,2N were then

employed in (4.35). Furthermore, with

N

y Too T11 " Ty, 0w
(] = 1, *
* *

we give some values of the feedback kernel

2N
N, \ _ N N
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>

~

~16

4 a6 e e T (1)

t
0 ~1.0602 ~1.0599 ~1.0598 ~1.0598
0.25 -0.8419 ~0.8419 -0.8419 ~0.8419
0.5 ~0.6209 -0.6241 ~0.6239 ~0.6239
0.75 ~0.4008 ~0.4030 ~0.4060 ~0.4060
1.0 ~0.2268 ~0.2116 ~0.2022 ~0.1880
1.25 -0.1743 ~0.1860 ~0.1884

1.5 ~0.1897 ~0.1878 ~0.1880

1.75 -0.1877 -0.1880 -0.1880

2.0 ~0.1880 -0.1880 ~0.1880 -0.1880

"2 ~4 ~8 ~16 —

t uz(t) u, (t) uy (t) u, (t)
0 -0.8721 -0.8719 -0.8718 -0.8718
0.25 -0.8721
0.5 -0.8721

0.75 -0.8721 ~0.8719

1.0 -0.8720 ~0.8718

1.25 ~0.8720

1.5 ~0.8719

1.75 ~0.8718

2.0 -0.8719 ~0.8718 ~0.8718 ~0.8718
J(w) 1.4018 1.4017 1.4017 1.4017

Table 4.1
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X

A %3 (t) %2 (1) x 0 (1) %, (£)

0.25 0.76221 0.76227 0.76228 0.76229
0.5 0.57927 0.57902 0.57905 0.57906
0.75 0.45179 0.45050 0.45031 0.45032
1.0 0.37519 0.37582 0.37500 0.37607
1.25 0.32780 0.32910 0.32905 0.32906
1.5 0.28219 0.28203 0.28205 0.28208
1.75 0.23498 0.23503 0.23504 0.23504
2.0 0.18799 0.18802 0.18803 0.18803

"2 ~4 ~8 ~16 —

t xz(t) xz(t) X, (t) xz(t)

0.25 1.03198 1.03203 1.03205 1.03205
0.5 1.06395 1.06407 1.06409 1.06410
0.75 1.09593 1.09610 1.09614 1.09615
1.0 1.12791 1.12814 1.12818 1.12821
1.25 1.12906 1.12933 1.12934 1.12941
1.5 1.07761 1.07790 1.07797 1.07799
1.75 0.98737 0.98748 0.98755 0.98758
2.0 0.87187 0.87180 0.87179 0.87180

Table 4.2
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which together with ﬂgo determines the feedback law of the Nth approxima-

tion., At the mesh-points, we simply have

N N N N, N N N
Hl(O) =0, +T,, Hl(tlj) =1 ., =1

Example 4,2, This is the problem of minimizing

o

Hw = [ [x(t)? + u(t)?]de
0
subject to

x(t) = x(t) + x(t-1) + u(t), t > 0,

x(0) = 0, xo(t) = sinmt, -1 < t < 0,

Table 4.3 gives the optimal costs JN = <(x(0),x0),HN(x(0),x0)> 9 of the
~ M
approximating systems and the costs J(uN) when the original system is

controlled by uN.

N JN JY
A 0.32117 0.32143
8 0.32138 0.32143

16 0.32142 0.32143

Table 4.3
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at the meshpoints

Table 4.4 presents the feedback gains Hgo and HT(S)
-% , j = 0’...’4.
4 8 16
Too Too Too
2.8083 2.8092 2.8094
. b, 3 8,_j 16,_
i (G ) ;¢ %—)
0 0.6349 0.6365 0.6369
1 0.8700 0.8801 0.8838
2 1.2544 1.2745 1.2803
3 1.8518 1.8812 1.8895
4 2.7507 2.7930 2.8050
Table 4.4

In Table

4,5, we list the values of

M, L, 50,000 12
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ace) (e utce)
0.86968 0.86836 0.86818
0.25 0.64873 0.64888 0.64891
0.5 0.49572 0.49647 0.49657
0.75 0.36350 0.36395 0.36400
1.0 0.24664 0.24624 0.24618
1.25 0.16200 0.16153 0.16147
1.5 0.11027 0.10997 0.10993
1.75 0.08030 0.08022 0.08021
2.0 0.06013 0.06015 0.06015
2.25 0.04349 0.04347 0.04347
2.5 0.02988 0.02982 0.02982 |
2.75 0.02002 0.01996 0.01995 |
3.0 0.01377 0.01373 0.01372
. x*(6) x5 (t) x|
0.25 0.11276 0.11260 0.11258
0.5 0.05337 0.05332 0.05332
0.75 ~0.06642 ~0.06628 -0.06626
1.0 ~0.10870 ~0.10849 -0.10846
1.25 ~0.06170 ~0.06160 ~0.06158
1.5 ~0.01396 -0.01396 ~0.01397
1.75 0.00758 0.00753 0.00752
2.0 0.00180 0.00178 0.00178 |
2.25 -0.00787 -0.00784 ~0.00784 |
2.5 ~0.01034 ~0.01030 ~0.01029 |
2.75 ~0.00648 -0.00646 ~0.00646
3.0 -0.00178 | -0.00178 -0.00178
! i
Table 4.5
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Example 4.3. A simplified model for a wind tunnel at NASA”s Langley Research

Center is given by (see [4])

-a 0 0 0 ka 0
(4.36) x(t) =) 0 0 1 x(t) + |0 0 0| x(t - 0.33)
0 w?  -2u 0 0 0
0
+1]10 u(t), t >0,
...wz

x(0) = col(-0.1,8,547,0) = xo(t), -0,33 <t 5_0, where k = -0.0117,

g = 0,8, w = 6,0, %-= 1.964, One wants to minimize

3wy = [ [10% (0% + u()?lae
0

subject to (4.36).

The true solution of the problem was given in [16]. Note that the
matrix Wg weighting the contribution of the state trajectory to the costs is
singular in this example, in contrast to the assumptions in Theorem 3.5. How-

ever, the piecewise linear approximation scheme produced the following values

for J(uN) and JN,
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l ~N N
N J(u™) J
4 136.4490 ) 136.1785
8 136.4490 136.2921
16 136.4493 136.3486
J(u) 136.4049
Table 4.6
N ’ !
N HOO
8677.02161 -9,81498 -0.94768
4 -9,.81498 0.01850 0.00186
-0.94768 0.00186 0.00019
8677.02502 -9.81503 -0.94768
8 -9.81503 0.01851 0.00186
-0.94768 0.00186 0.00019
8677.02551 -9,81504 ~-0.94768
16 -9.81504 0.01851 0.00186
-0.94768 0.00186 0.00019
8677.02405 -9.81505 -0.94768
Tyo -9.81505 0.01851 0.00186
-0.94768 0.00186 0.00019
Table 4.7

In Table 4.7, we compare the first block of the Riccati matrix HN with the

H@—component of I. The matrices Hl(t) and HT(t).
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-h = -0.33 <t <0, have nonzero entries only in their second columns, which
are shown in Table 4.8 for t = - %E , j = 0,e00,4,
i 0 1 2 3 4
-41.39647 ~43.83755 -46.36726 -48.97855 -51.67634
H?(- %E) 0.06915 0.06653 0.06358 0.06095 0.05845
0.00669 0.00641 0.00614 0.00589 0.00564
~41.39710 -43,84694 -46.37700 ~48.98892 ~51.68730
H?(— %E) 0.06917 0.06633 0.06359 0.06097 0.05847
0.00668 0.00640 0.00614 0.00589 0.00565
~41,39721 -43,84929 -46,37952 ~48.99157 -51.69010
ni‘s(— %E) 0.06917 0.06631 0.06360 0.06098 0.05847
0.00668 0.00640 0.00614 0.00589 0.00565
~41.39721 -43,85008 -46.38034 ~48.99246 ~-51.69103
Hl(— %29 0.06917 ‘ 0.06632 0.06360 0.06098 0.05847
0.00668 0.00641 0.00614 0.00589 0.00565
Table 4.8
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